Thu 14 Oct 2010 20:22

New process extracts hydrogen from seawater


Generating hydrogen on demand from seawater to power ships is now possible, according to researchers.



Researchers at Purdue University, Indiana, claim that they have developed a process to extract hydrogen from seawater, which could then be fed directly to an internal combustion engine.

The technique had previously worked only for freshwater, but a new formulation is said to also enable the method to generate hydrogen from seawater.

The new development means, in theory, that it would no longer be necessary to store or transport hydrogen on board a ship for power generation - a major challenge in using hydrogen to power ships up until now.

Commenting on the breakthrough, Jerry Woodall, a professor of electrical and computer engineering at Purdue University said "This is important because it might have many marine applications, including cruise ships and tankers."

"We generate the hydrogen on demand, as you need it. It also eliminates the need to store fresh water when used for marine applications."

The method for hydrogen extraction involves using aluminium and a liquid alloy. Woodall's team of researchers have been developing aluminum-based alloys that generate hydrogen from water since 2007. The Purdue Research Foundation has also filed a separate provisional patent application on the new process for seawater.

During the process, the aluminium reacts with oxygen atoms in water molecules, thus freeing the hydrogen. The waste product, aluminium hydroxide, can be recycled back to aluminium using existing commercial processes.

According to Woodall, the technology also represents a new way of storing energy from solar and wind power because waste produced in the process could be recycled using wind turbines and solar cells.

"Being unable to store energy from wind and solar has been a major limitation for those technologies because they don’t work very well when the sun isn’t shining and the wind isn’t blowing," said Woodall. "But if we converted energy from wind and solar into fuel for hydrogen-generation, we would, in effect, be solving this problem because the hydrogen could then be used to generate electricity, to run engines or fuel cells."

The material used in the process is made of small grains of aluminium surrounded by an alloy containing gallium, indium and tin, which is liquid at room temperature. The liquid alloy dissolves the aluminium, causing it to react with the seawater and release the hydrogen.

Rather than using powdered aluminium, which has been used in other techniques to generate hydrogen using aluminium, Purdue's team of researchers chose to use bulk metal for 'practical' reasons because powder was said to be 'too expensive and cumbersome'.

"We believe the process is economically competitive with conventional fuels for transportation and power generation," said Woodall.

"Since aluminium is low-cost, abundant and has an energy density larger than coal, this technology can be used on a global scale and could greatly reduce the global consumption of fossil fuels. Also, by co-locating a solar farm or wind turbine complex and an aluminium smelter at a utilities plant, the smelter could be operated around the clock using utility electricity during off-peak times," added Woodall.


CEO, Fredrik Witte and CFO, Mette Rokne Hanestad. Corvus Energy raises $60m from consortium for maritime battery expansion  

Norwegian energy storage supplier secures growth capital to accelerate zero-emission shipping solutions.

Indian Register of Shipping hosts at LISW 2025. Shipping industry warned nuclear power is essential to meet 2050 net zero targets  

Experts say government backing is needed for nuclear investment.

Rendering of LNG bunkering vessel Avenir TBN. ExxonMobil enters LNG bunkering with two vessels planned for 2027  

Energy company to charter vessels from Avenir LNG and Evalend Shipping for marine fuel operations.

Logos of international maritime associations supporting IMO Net Zero Framework. Shipping associations back IMO Net-Zero Framework ahead of key vote  

Seven international associations urge governments to adopt comprehensive decarbonisation rules at IMO meeting.

Concept illustration of biofuel and renewable energy production. Study claims biofuels emit 16% more CO2 than fossil fuels they replace  

Transport & Environment report challenges biofuels as climate solution ahead of COP30.

Rendering of Green Ammonia FPSO. ABB to supply automation systems for floating green ammonia production vessel  

Technology firm signs agreement with SwitcH2 for Portuguese offshore facility producing 243,000 tonnes annually.

VPS launches VeriSphere digital platform. VPS launches Verisphere digital platform to streamline marine fuel decarbonisation tools  

New ecosystem connects multiple maritime emissions solutions through single user interface.

Wallenius Sol vessel Botnia Enabler. Wallenius Sol joins Gasum's FuelEU Maritime compliance pool as bio-LNG generator  

Partnership aims to help shipping companies meet EU carbon intensity requirements through bio-LNG pooling.

IAPH Clean Marine Fuels Working Group. IAPH launches products portal with ammonia bunker safety checklist  

Port association releases industry-first ammonia fuel checklist alongside updated tools for alternative marine fuels.

Berkel AHK Logo. Berkel AHK joins Global Ethanol Association as founding member  

German ethanol producer becomes founding member of industry association focused on marine fuel applications.





 Recommended