Mon 20 Jul 2015, 14:52 GMT

LNG carrier project boasts improved energy efficiency


Vessel concept is said to have led to a higher level of energy efficiency and an improved boil-off rate.



DNV GL has announced the completion of the LNGreen joint industry project, which worked to develop a state-of-the-art next-generation LNG carrier.

The project brought together experts from DNV GL and industry specialists from GTT, Hyundai Heavy Industries (HHI) and the shipowner GasLog. Each of the project partners contributed with their knowledge and experience to develop tomorrow's LNG carrier using the latest technology, within the bounds of existing shipbuilding methods, DNV GL explained today in a statement.

According to DNV GL, the vessel concept has a significantly improved environmental footprint, a higher level of energy efficiency, as well as an improved boil-off rate and cargo capacity, thus making it much better suited to future trading patterns than existing vessels.

LNGreen investigated the improvement of efficiency and performance of LNG carriers by considering actual operational conditions and optimisation in terms of hydrodynamics, machinery and system configuration. These developments were based on DNV GL's modelling suite, COSSMOS, state-of-the-art computational fluid dynamics calculations (CFD), and a containment system design, tailored to a specific operational profile and anticipated trades.

Martin Davies, the Project Manager at DNV GL stated that "using enabling computer tools we managed to develop a vessel which is approximately 8% more energy efficient and has increased its cargo volume capacity by 5%. The design is future compliant with new IGC code, Panama requirements as well as significant advances in a range of features, including the speed-range flexibility, hull form and boil-off rate".

Describing the process, DNV GL said: "The total efficiency was assessed using an integrated systems approach. LNG carrier machinery systems are highly complex featuring tightly integrated sub-systems and components, like the BOG compression trains, gas management system, reliquefaction (if any), propulsion and/or generating engines, exhaust gas economisers and boilers. The primary fuel, i.e. boil-off gas, has variable properties depending on LNG cargo type and in-voyage boil-off rate conditions. In addition, the ships usually operate on a number of trading routes. Their operating profiles vary in terms of speed, propulsion, electrical and heat demand. The above features require a rigorous model-based approach, using DNV GL COSSMOS, to assess the integrated machinery system under realistic operating conditions as experienced by GasLog.

"HHI and DNV GL carried out the hydrodynamic performance evaluation by comparing CFD simulations. Different CFD codes were applied for the comparison of resistance and self-propulsion performance but different scale effects were also considered. In addition, added resistance caused by wind and waves was investigated in order to ensure that the required power is sufficient for operation in the targeted environmental conditions.

"Cargo containment optimisation was investigated by GTT and HHI. The tank shape, necessary reinforcements and boil off rate calculations, were examined to develop alternative cargo tank designs that could yield additional cargo capacity. With a starting design point of 174,000m3 cargo capacity, cargo tank optimisation by GTT and HHI allowed for a cargo capacity increase to 182,800m3, while maintaining the same main dimensions (length overall, breadth, draft) and taking into consideration newly introduced regulations and compatibility restrictions."

Nikolaos Kakalis, Manager of DNV GL Research & Development in Greece and responsible for COSSMOS development, commented that "fusing unique competencies of key experts from across the industry, like HHI, GTT, and GasLog, with advanced tools like the COSSMOS machinery systems simulation and optimisation computer platform as well as state-of-the-art hull optimisation software, we bring innovation in practice that can generate tangible added value. As LNGreen utilizes existing technology it is important to stress that this concept design could be ordered today".


Varsha Sudheer, Island Oil. Island Oil appoints Varsha Sudheer as senior trader in Dubai  

Marine fuel supplier strengthens trading platform with new hire at recently established UAE hub.

Bitoil Group logo. Bitoil Group seeks bunker trader for Dubai operations  

Dubai-based company is recruiting for a senior bunker trader role to manage global fuel sales and procurement.

Hiring concept with puzzle pieces and a magnifying glass. Uni-Fuels seeks bunker traders for new London operation  

Singapore-headquartered firm advertises position as part of UK expansion.

Hiring concept with puzzle pieces. Uni-Fuels seeks bunker traders for new Piraeus office  

Nasdaq-listed marine fuel provider advertises positions as part of expansion into Greek market.

Sleipner RoRo vessel render. Wing sails could cut fuel use by 9% on expedition cruise vessels, study finds  

Wallenius Marine and Salén Ship Management examine wind propulsion potential beyond cargo shipping.

C-Flexer RoRo vessel render. Stena RoRo orders C-Flexer RoRo vessels with battery-hybrid propulsion for 2029 delivery  

Swedish shipowner places order with China Merchants Industry for next-generation vessels designed by NAOS.

IMO Technical Seminar on Marine Biofuels graphic. IMO to host technical seminar on marine biofuels in February  

Event at London headquarters will examine recent experiences and future prospects for biofuels in shipping.

Maritime Cleantech Enabling Ammonia Bunkering seminar graphic. H2SITE to present ammonia cracking technology at Bergen maritime seminar  

Spanish firm to showcase dual-environment hydrogen production system for vessels and ports at Maritime CleanTech event.

The Arctic and black carbon graphic. Clean Arctic Alliance urges Canada, Iceland and Norway to back polar fuels proposal at IMO  

Environmental coalition calls on three Arctic nations to support Denmark-led measure on black carbon emissions.

Valenciaport and Port of Santos MoU signing. Valencia and Santos ports establish green corridor to decarbonise transatlantic trade  

Ports sign agreement to promote low-emission fuels and shore power on Europe–South America route.