Thu 13 Mar 2014 14:47

Report examines future fuel mix in shipping


Research explores future fuel demand for the containership, bulk carrier/general cargo and tanker sectors.



Source: Lloyd’s Register

New research from Lloyd’s Register and University College London’s Energy Institute explores the drivers for the future energy mix in shipping in 2030.

– Report indicates that in all scenarios heavy fuel oil remains the main fuel for deep sea shipping; LNG develops a deep sea bunker market share of 11%; low sulphur heavy fuel oil and hydrogen emerge as alternatives in certain scenarios. – In Global Commons, the most optimistic scenario for a more sustainable world, global greenhouse gas emissions from shipping decline from 2025 despite significant growth in shipping.

– Study shows that the combination of growth in trade and reduced emissions would require a reduction in fossil fuel dependency and the commencement of a transition to a zero carbon fuel like hydrogen.

Global Marine Fuel Trends 2030 (GMFT 2030) released by Lloyd’s Register provides insight into future fuel demand for the containership, bulk carrier/general cargo and tanker sectors – representing approximately 70% of the global shipping industry’s fuel demands.

Shipping is the enabler of world trade – if world trade grows then so will seaborne tonne miles of cargo. The GMFT 2030 report issued last year indicates we can expect strong growth for shipping. With emissions regulations and rising energy costs, shipping decision makers will benefit from a clearer understanding of the potential scenarios for marine fuel demand.

The three scenarios are:

Status Quo – The world will continue its current growth momentum with some booms and busts over the next twenty years.

Global Commons – A shift to concern over resource limitation and environmental degradation will see a desire for a more sustainable world being developed and fairness in wealth distribution. Governments will find common ground and accelerated economic growth, within a framework of sustainable development, which will follow.

Competing Nations – States act in their own national interest. There will be little effort to forge agreement amongst governments for sustainable development and international norms. This is a self-interest and zero-sum world with a likely rise in protectionism and slower economic growth.

So what does the marine fuel mix look like for containers, bulk carriers and tankers by 2030? In two words: decreasingly conventional. Heavy fuel oil (HFO) will still be very much around in 2030, but in different proportions for each scenario: 47% in Status Quo, to a higher 66% in Competing Nations and a 58% share in Global Commons, the most optimistic of scenarios for society. A high share of HFO, of course, means a high uptake of emissions abatement technology when global emissions regulations enter into force.

The declining share of HFO will be offset by low sulphur alternatives (MDO/MGO or LSHFO) and by LNG, and this will happen differently for each ship type and scenario. LNG will reach a maximum 11% share by 2030 in Status Quo. Interestingly, there is also the entry of Hydrogen as an emerging shipping fuel in the 2030 Global Commons scenario which favours the uptake of low carbon technologies stimulated by a significant carbon price.

"I think that the report underlines that any transition from a dependency on HFO will be an evolutionary process," comments Project Leader, Dimitris Argyros – LR’s Lead Environmental Consultant. "LNG is forecast to grow from a very low base to a significant market share by 2030 – even if there is no major retro-fit revolution – most of the LNG take-up will be in new buildings. But it is important to note that an 11% share in 2030 is the equivalent in volume of about 20% of the bunker market today."

"What we can say is that the uptake of engine and alternative propulsion technology and the emergence of non-fossil fuels can only be driven by a society’s ability to create a world with lower GHG emissions – the technology is not the barrier. Key will be policy and markets. Shipping can control its own destiny to some extent – but shipowners can only focus on compliance and profitability. If society wants lower GHG emissions and cleaner fuel, change in shipping has to be driven by practical regulation and market forces so that cleaner, more efficient ships, are more profitable than less efficient ships with higher GHG emissions."

GMFT 2030 boundaries are wide but not completely inclusive: we examine the containership, bulk carrier/general cargo and tanker (crude and chemical/products) sectors, representing approximately 70% of the shipping industry’s fuel demand in 2007. We include fuels ranging from liquid fuels used today (HFO, MDO/MGO) to their bio-alternatives (bio-diesel, straight vegetable oil) and from LNG and biogas to methanol and hydrogen (derived both from methane or wood biomass).

Engine technology includes 2 or 4 stroke diesels, diesel-electric, gas engines and fuel cell technology. A wide range of energy efficiency technologies and abatement solutions (including sulphur scrubbers and Selective Catalytic Reduction for NOx emissions abatement) compatible with the examined ship types are included in the modelling. The uptake of these technologies influences the uptake of different fuels.

Regulation is aligned with each of the 3 overarching scenarios to reflect business-as-usual, globalisation or localisation trends. They include current and future emission control areas (ECAs), energy efficiency requirements (EEDI) and carbon policies (carbon tax). Oil, gas and hydrogen fuel prices are also linked to the Status Quo.

Image: LNG Sokoto, operated by Bonny Gas Transport Ltd.


Marius Kairys, CEO of Elenger Sp. z o.o. Elenger enters Polish LNG bunkering market with ferry refuelling operation  

Baltic energy firm completes maiden truck-to-ship LNG delivery in Gdansk.

Samsung Heavy Industries (SHI) virtual reality (VR) training program developed in collaboration with Evergreen. SHI develops VR training solutions for Evergreen's methanol-fuelled ships  

Shipbuilder creates virtual reality program for 16,500 TEU boxship operations.

Illustratic image of Itochu's newbuild ammonia bunkering vessel, scheduled for delivery in September 2027. Itochu orders 5,000 cbm ammonia bunker vessel  

Japanese firm targets Singapore demonstration after October 2027, with Zeta Bunkering lined up to perform deliveries.

Bunkering of the Glovis Selene car carrier. Shell completes first LNG bunkering operation with Hyundai Glovis in Singapore  

Energy major supplies fuel to South Korean logistics firm's dual-fuel vessel.

Orient Overseas Container Line (OOCL) vessel. CPN delivers first B30 marine gasoil to OOCL in Hong Kong  

Chimbusco Pan Nation claims to be first in region to supply all grades of ISCC-EU certified marine biofuel.

The Buffalo 404 barge, owned by Buffalo Marine Service Inc., performing a bunker delivery. TFG Marine installs first ISO-certified mass flow meter on US Gulf bunker barge  

Installation marks expansion of company's digitalisation programme across global fleet.

Sogestran's fuel supply vessel, the Anatife, at the port of Belle-Île-en-Mer. Sogestran's HVO-powered tanker achieves 78% CO2 reduction on French island fuel runs  

Small tanker Anatife saves fuel while supplying Belle-Île and Île d'Yeu.

Crowley 1,400 TEU LNG-powered containership, Tiscapa. Crowley deploys LNG-powered boxship Tiscapa for Caribbean and Central American routes  

Vessel is the third in company's Avance Class fleet to enter service.

The inland LNG bunker vessel LNG London. LNG London completes 1,000 bunkering operations in Rotterdam and Antwerp  

Delivery vessel reaches milestone after five years of operations across ARA hub.

The M.V. COSCO Shipping Yangpu, China's first methanol dual-fuel containership. COSCO vessel completes maiden green methanol bunkering at Yangpu  

China's first methanol dual-fuel containership refuels with green methanol derived from urban waste.


↑  Back to Top